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A form of artificial viscosity, which is second-order and quadratic, is developed for 
elastic solids. This new form and the standard linear artificial viscosity are compared. 
It is observed that the artificial viscosity works best when applied only to expanding 
zones. 

Von Neuman and Richtmyer [l] proposed a technique, known as artificial 
viscosity, for damping numerical noise when simulating gas dynamics on a digital 
computer. The technique is frequently called the “q” technique because an artificial 
pressure (designated by the letter q) is calculated and added to the pressure for 
every zone in the problem. The following equation describes this q: 

q = p(cAxy 1 Au/Ax 12 for compressing zones, 
= 0 for expanding zones, 

where p is density, u is velocity, dx is zone width, and c is a dimensionless constant. 
Unfortunately, this form of q does not damp numerical noise when calcmating 

weak shocks in elastic solids. If a q is to have a noticeable damping effect, its value 
must be significant compared to the value of p, the pressure. A good measure of the 
damping ability of the q is the ratio of q top. For weak shocks we also know that 

Au = Aplpcs , 

where c, is the sound speed, and is approximately constant. 
For the elastic solid we have 
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* This work was performed under the auspices of the U.S. Atomic Energy Commission. 
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A similar calculation for a y-law gas (cS2 = yp/p) yields 

;,, = f (+L,: 

Thus for the y-law gas, the ratio of q top is determined by the relative size of the 
change in pressure and the pressure itself. If the change in pressure is large relative 
to the pressure, the damping will be large; if the change in pressure is small 
relative to the pressure, the damping will be small. However, for the elastic solid, 
q/p can vanish when Ap is small even if Ap/p is not small. But, if Ap/p is not small, 
significant damping is needed. 

A linear q is usually used for damping numerical oscillations resulting from 
weak shocks in elastic solids. The linear q is given as 

qL = p(cAx) c,(Au/Ax). 

In the limit of weak shocks we obtain 

qL = CAP. 

And, since this is independent of the equation of state, we obtain 

e/p = c@P/P>, 

which holds for elastic solids and y-law gases. The linear q has the disadvantage 
of being weakly sensitive to the presence of shocks and it introduces an error that 
is first order in (Ax). This has been the most frequently used q to damp numerical 
oscillations resulting from weak shocks in elastic solids. Unfortunately, although 
the noise is damped, the solution may be dominated by the dissipation introduced 
by the q rather than by the inviscid physics which the model is intended to simulate. 
Viecelli [2] has discussed this problem and points out that the difficulty can be 
circumvented only by using unreasonably small zone size. To minimize the error of 
dissipating too much kinetic energy and of converting it into potential energy, 
one would like to have a quadratic q (and second-order accurate in Ax) that would 
work for elastic solids. Consider the following form for q 

qEs = WW2(A~/WU/~~, 

where jj is the average of the pressure ahead of the shock and the pressure behind 
the shock. Of course, jj is an unknown, but it can be approximated by using the 
third Rankine-Hugoniot equation: 

AE = j5 A(l/p), i.e., F = AWWp), 
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where E is the energy per unit mass. Note that, away from shocks, jj reduces top. 
It should also be noted that qEs is equal to qL multiplied by (cdx)(dp/dx)(l/p) in 
the limit of weak shocks. 

We obtain the fOllOWhg tXptiOU for qES 

qES = cc dx) 
2(p$!gII~/ 121. 

We can replace Ap LI l/p by (d~)~ because of the second Rankine-Hugoniot 
equation. We can also replace dp/Ax by (l/&(dp/~lt) and LIE/AX by (l/&dE/flt), 
where f is the signal speed, because of the characteristic nature of wave equations. 
The equation for qes then becomes 

where the subscript x refers to spatial differences across a zone and t refers to 
temporal differences within a zone. This form of qEs will not encounter intrinsic 
difficulties at material interfaces or at boundaries. An important point is that LIE, 
must be purely the contribution resulting from (p + q) dV work, that is, it must 
not include a contribution from the elastic energy change. Of course, if LIE, 
equal zero, the calculation must be skipped and the qEs set equal to zero. One can 
also consider leaving the q turned on for expanding zones in addition to or in 
place of compressing zones. The sign for a q is negative when turned on for 
expanding zones. 

COMPUTER CALCULATIONS 

Numerous simple calculations were run to test this new form of q. The standard 
quadratic form of Von Neumann and Richtmyer is always used in addition qEs 
or qL . Its influence is important for strong shock waves but becomes insignificant 
for waves that are weak or that become weak. The first series of calculations 
consisted of a lo-cm-radius sphere of high explosive placed in the center of a larger 
sphere (radii varying from 100 cm to 1000 cm) of iron using the UK0 [3] computer 
program and its equations of state of these materials. 

With the iron radius at 100 cm, a zone size study was performed in which either 
&s or qL were turned for compressing or expanding zones or for both. The high 
explosive is completely burned at t = 0 and after 175 psec a weak shock has 
arrived at the R = 90 cm position. The peak pressure in the shock at this time is 
plotted in Fig. 1, as a function of relative zone size for several different q formu- 
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FIG. 1. Peak pressure vs zone size. Curve A is qL = -0.1 p C. 1 AU 1 for expanding zones 
only; Curve B is qEs = -1.0 1 AP IS/p for expanding zones only; Curve A is qL = f 0.05 p 
C, j AU [ “on” for expanding and compressing zones; and Curve B is qes = i 0.25 j AP la/P 
“on” for expanding and compressing zones. 

lations. The different coefficients were chosen so that all sets of calculations 
possessed approximately the same degree of damping or “smoothness.” 

If only the 2 curve has been plotted, it would be easy to obtain an extrapolated 
value of $ that would be too small by a significant amount. This is the effect Viecelli 
discusses. The A and B curves indicate that a convergence problem exists for the q 
being “on” for compressing zones for elastic solids. That is, the solutions do not 
appear to be converging to the same result. Although the curve is not plotted on 
Fig. 1, a similar qL calculation was run with the q “on” only for compressing zones. 
Its plot fell essentially on top of the A curve. 

The functional behavior of the A and 3 curves is much more satisfactory than 
those of A and B. From them, we observe that the zero zone size extrapolated value 
of $ is approximately 0.158 kbar. One might anticipate that the solution for $ 
of the A and B curves would also converge to approximately 0.158 kbar if an 
unlimited number of zones were available. In these sets of calculations, it has been 
observed the qEs can indeed provide damping for weak shocks, and it has also been 
observed that the damping for elastic solids should concentrate on the expanding 
zones. 

With the outer radius of the iron increased by a factor of 10 (to 1000 cm), 
a weak shock arrives at R N 880 cm at time 1925 psec. With Ax = 2.0 cm the 
following results for peak pressures (4) were obtained in two calculations. 

$ = 0.055 kb q = ho.1 p c, 1 Au 1 (compression and expansion; 

linear terms only) (1) 

$ = 0.070 kb q = -0.3 1 Ap I”& - 0.07 p C, I AU I 
(expansion only; 

quadratic and linear terms) (2) 
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Note that the second calculation used both qEs and qL but that the coefficient for qL 
is very small compared to that for qEs . The velocity showed a similar difference 
at the peak of the weak shock. This of course means an even larger difference 
in the peak values of kinetic energy. The ratio of the two $ values is 0.786 for the 
two different forms of q. At 175 psec (R = go-cm shock position) the values of $ 
had been 0.115 kbar and 0.126 kbar, giving a ratio of 0.913 when the signal has 
traveled the same distance as was used in the zone size study of Fig. 1. This simply 
indicates that for longer distances of signal travel, the importance of dissipation 
increases. 

The previous examples apparently indicate some techniques available for 
qualitative improvements in solution behavior for a type of calculation that is 
frequently of practical interest. A new second-order quadratic q has been developed 
such that its damping properties are effective for weak shocks in elastic materials. 
Furthermore, the use of significant (linear or quadratic) q's for elastic waves should 
be restricted to expanding zones to reduce nonphysical dissipation and to obtain 
better convergence properties as the zone size approaches zero. 

We will now apply these techniques to a problem with an analytic solution to 
obtain a more conclusive measure of their utility. A pressure is instantaneously 
applied at the surface of an elastic planar material and the pressure then decays 
exponentially in time. The pressure pulse should propagate at the sound speed 
through the material. For the particular calculation chosen here the elastic 
constants are: h = 0.5 Mbar, p = 0.0, and p,, = 0.001 Mbar with an e-folding 
time of 1 msec (X and E.L are Lame’s parameters). Even though the signal is weak, 
the wave front is discontinuous. Hence, this problem presents a real test of a 
technique’s ability to damp oscillations and still retain accuracy. In the earlier 
problems (spherical high explosive inside spherical iron) the signal was spread 
initially by the classical q of von Neumann and Richtmyer so that the new q 
technique for elastic waves never saw a discontinuous signal, In those problems, 
the new q handled the transition from strong shocks to weak shocks quite well, 
maintaining a smooth signal while introducing less dissipation. 

Figures 2, 3, and 4 show the degree to which noise is damped as the q is “turned 
on” for calculations of the analytic solution problem after the pressure has e-folded 
four times. Figure 2 has no q affecting the noise; in Fig. 3 a small amount of the 
new quadratic elastic q has damped most of the noise; and in Fig. 4 a very small 
linear q has been added for additional smoothing. The analytic solution is also 
shown in each figure and it is obvious that the q has dissipated the signal signifi- 
cantly. Because of the q's zone-size dependence, one would expect noticeably less 
dissipation as the zone size is reduced. In Fig. 5, the results are presented in which 
the calculation has been done in the same way as for Fig. 4, except that the zone size 
has been reduced by a factor of four. Clearly, there has been less dissipation, but 
a small overshoot is now apparent (approximately 3 %). This can be compared to 

581/16/z-3 
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Fig. 6, which gives a finely zoned calculation using a more typical form of linear q 
that is “on” for compressing zones. The linear-compressive q results in an under- 
shoot of about 17 %. Thus, the error at the peak is considerably smaller with the 
new q. Of greater importance than the size of overshoot or undershoot is the 
amount of dissipation which eats away at the kinetic energy carried by the wave. 
The kinetic energy carried by the wave is more accurately measured by the area 
under the pressure as position curve. By this criterion, the improvement resulting 
from the new q technique is even more signihcant. The longer the wave is 
propagated, the greater will be the relative improvement resulting from the new q. 

In fact, it would also have been possible to examine the wave after fewer pressure 
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FIG. 2. Pressure vs radius for 100 zones: no q. 

---Analytic solution 
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FIG. 3. Pressure vs radius for 100 zones: qes = -0.5 [(Ap)Q5] (quadratic term only) (ex- 
pansion zones only). 
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FIG. 4. Pressure VS radius for 100 zones: q = qES - 0.05 PC, I Au I 

---Analvtic solution 
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FIG. 5. Pressure vs radius for 400 zones (finely zoned): q = qEs - 0.05 pc, 1 Au 1. 

e-folds and to have observed that the overshoot and undershoot were of com- 
parable sizes; however the new q would have resulted in considerably less 
dissipation as indicated by the area under the pressure-position curve. Had we 
chosen a steeply rising (but not instantaneously rising) pressure pulse with a 
smooth peak, no significant overshoot would have developed with the new q. 
This is mentioned to emphasize again that the particular analytic example presented 
here poses a very severe test of the improvement obtainable by the new technique. 

By ensuring that At was less than 0.9 the Courant value, stability was achieved 
in the above calculations. The coefficients chosen for the q’s naturally reflect the 
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---Analytic solution : 

Position -m 

FIG. 6. Pressure vs radius for 400 zones (finely zoned): q = kO.1 pc, 1 Au I (symmetric for 
expansion and compression zones). 

bias of the author’s experience, particularly the concentration on spherically 
diverging waves. The q is formulated in terms of pressure gradients because this is 
the simplest approach, but the stress gradients might be more appropriate. 

DISCUSSION 

Von Neumann and Richtmyer [l] showed that the jump conditions across the 
shock were satisfied by the introduction of artificial viscosity for calculations of 
ideal gases: That q can be considered to account for irreversible thermodynamics. 
In the elastic problems described in this paper, better results are obtained by 
applying a new form of the q (and the old linear form) to expanding zones. For 
expanding zones, gradients are usually not steep and dissipation is not excessive. 
For elastic behavior, there are no irreversible thermodynamic phenomena to be 
considered. Thus it is best to avoid adding artificial viscosity for compressing-zones, 
since such an addition may result in significant undesirable dissipation in the 
presence of strong gradients. 
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